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Abstract Bacterial artificial chromosome (BAC)

libraries with large DNA fragment inserts have rapidly

become the preferred choice for physical mapping.

BAC-derived microsatellite or simple sequence repeats

(SSRs) markers facilitate the integration of physical

maps with genetic maps. The objective of this research

was to identify chromosome locations of the BAC-

derived SSR markers in tetraploid cotton. A total of 192

SSR primer pairs were derived from BAC clones of an

Upland cotton genetic standard line TM-1 (Gossypium

hirsutum L.). Metaphor agarose gel electrophoresis

results revealed 76 and 59 polymorphic markers

between TM-1 and 3–79 (G. barbadense) or G. tomen-

tosum, respectively. Using deletion analysis method, we

assigned 39 markers out of the 192 primer pairs to 17

different chromosomes or chromosome arms. Among

them, 19 and 17 markers were localized to A-subge-

nomes (chromosome 1–13) and D-subgenomes

(chromosome 14–26), respectively. The subgenome

status for the remaining three markers remained unclear

due to their two potential chromosome locations

achieved by tertiary monosomic stocks deletion anal-

ysis. Chromosomal assignment of these BAC-derived

SSR markers will help in integrating physical and

cotton genetic linkage maps and thus facilitate posi-

tional candidate gene cloning, comparative genome

analysis, and the coordination of chromosome-based

genome sequencing project in cotton.
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QTL Quantitative trait locus

SCAR Sequence characterized amplified region

SSR Simple sequence repeat

SNP Single nucleotide polymorphisms

TMB TM-1 BAC/BIBAC

NTN Tertiary monosomic cytogenetic stock

Introduction

Microsatellites or simple sequence repeats (SSRs) are

considered desirable markers in molecular mapping

because of their distribution throughout the genomes,

hypervariability, abundance, reproducibility, Mende-

lian inheritance, and most importantly their

amenability for high-throughput PCR-based assay

for genotyping. A large number (more than 5,000) of

microsatellites had been developed and are described

in cotton (Gossypium spp.) microsatellite database

(CMD, http://www.cottonmarker.org/) (Blenda et al.

2006). To date, several genetic linkage maps con-

sisting mainly of SSR markers have been constructed

in cotton (Han et al. 2004, 2006; Nguyen et al. 2004;

Lacape et al. 2005; Park et al. 2005; Frelichowski

et al. 2006; Guo et al. 2007). However, there are still

great needs for SSR markers in the construction of a

high density molecular map for reliable detection,

mapping, and estimating gene effects of important

agronomic traits. A high resolution genetic map is

also important for genome sequence assembling and

genome structure and evolution revelation.

Libraries of large DNA inserts are an essential tool

for genome research including physical mapping, map-

based cloning, gene structure and function analysis.

Bacterial artificial chromosome (BAC) libraries with

large DNA inserts have rapidly become the preferred

choice for physical mapping (Hanson et al. 1995;

Zhang et al. 2004). In cotton, BAC libraries have been

constructed and used for physical mapping and chro-

mosomal localization of linkage group (Frelichowski

et al. 2006; Wang et al. 2006; Yin et al. 2006).

Generating SSR markers from a BAC library (BAC-

derived SSR markers) could provide additional advan-

tages over other no-targeted methods for marker

development (Yu et al. 2002a, b). Firstly, it has the

potential to integrate physical maps with genetic maps

(Danesh et al. 1998; Cregan et al. 1999; Chen et al.

2002; Yu et al. 2002a, b; Wu et al. 2004). Secondly, it

is easy to convert to other types makers such as SCAR

(Guo et al. 2003) and SNP (Rong et al. 2004; An et al.

2007) based on the adjacent sequences of the large

inserts. Thirdly, it can streamline high-resolution map-

ping and map-based cloning of genes and QTLs

(quantitative trait loci) of interest. Lastly, chromosome

locations of BAC-derived SSR markers can provide a

foundation for chromosomal assignment of BAC clones

and thus facilitate chromosome-based sequencing.

Yu et al. (2002a, b) reported the discovery of a set

of BAC-derived SSR markers from a TM-1 library,

which were then used for molecular mapping in

cotton. In this study, we conducted comprehensive

cytogenetic stocks-based deletion analysis to assign

these makers to specific chromosome or chromosome

arm. The results provide information of chromosome

locations of these markers and served as verification

to the linkage mapping results. In addition to

saturating current cotton linkage maps, this set of

BAC-derived SSR markers’ chromosomal location

will facilitate map-based cloning, comparative gen-

ome analysis, and the coordination of chromosome-

based genome sequencing projects.

Materials and methods

Plant materials and DNAs isolation

Three different tetraploid species G. hirsutum L.

(AD1) Texas Marker-1 (TM-1, CMD01), G. barba-

dense L. (AD2) (3–79, CMD02), and G. tomentosum

Nuttall ex Seemann (AD3) (CMD11), an introgres-

sion breeding source, were used as plant materials for

polymorphism screening. Two sets of primary mono-

somic and monotelodisomic F1 interspecific hybrids,

from G. hirsutum (TM-1) aneuploids crossed with 3–

79 (G. barbadense) versus G. tomentosum and one

set of tertiary monosomic hybrids (represented by

NTN), from crosses with G. tomentosum only were

used to localize the BAC-derived SSR markers to

chromosome. The primary monosomic plants

(2n = 51) lacked an entire chromosome of TM-1

complement, whereas monotelodisomic plants

(2n = 52) lacked most or all of just one TM-1

chromosome arm. Each tertiary monosomic plant

lacked a chromosome segment of two chromosomes

involved in reciprocal translocation. The specific

aneuploid F1 plants and their TAES (Texas Agricul-

tural Experiment Station) plant identification codes

are listed in Table 1. All plant materials were grown
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Table 1 Hypoaneuploid F1 interspecific chromosome substitution stock identification codes

Chromosome G. barbadensea G. tomentosumb

Mc shd Loe Mc shd Loe

1 – – 9708030.04 200108072.06 200108076.10 200100323.12

2 – – 9708030.06 200108072.08 200108077.03 200100324.03

3 – 9508049.06 9800215.05 – 200108077.09 200108077.05

4 000811.09 9508049.08 9200226.02 20018073.05 200100325.02 200108078.02

5 – – 9708031.04 – – 200108078.06

6 9808016.09 9508050.01 9708031.05 200108078.07 200108078.09 200108078.08

7 0008046.04 9908046.10 0.11453.15 200108073.09 200108079.02 –

8 – – 0100463.17 – – 200100443.02

9 9808017.07 – 9808021.10 200108074.08 – 200108079.04

10 0008046.07 0000851.09 9708032.02 200108074.10 – –

11 – – 9908047.09 – – 200108080.04

12 9200331.08 – – – – 200108080.07

13 – – – – – –

14 – – 9708032.06 – – 200108080.10

15 – – – – – 200108081.01

16 – 9908049.06 000849.05 200108075.06 – 200108081.04

17 9908041.10 9908049.08 – – – –

18 0008047.02 9908050.01 9908050.03 200108076.02 200108081.10 200108081.09

19 – – – – – –

20 9508048.10 9508051.09 9300896.02 200100283.01 200334.09 –

21 – – – – – –

22 – 9908051.04 – – 200108082.08 200108082.06

23 0008040.03 – – – – –

24 – – – – – –

25 – – 9808024.09 200108076.08 – 200108083.01

26 – 0008050.05 0100471.07 – 200108083.04 200108083.05

NTN4-15f – 200100336.01

NTN6-14f – 200100341.08

NTN7-11f – 200100342.12

NTN10-19f – 200100343.10

NTN12-11f – 200100423.08

NTN16-15f – 200100346.14

NTN17-11f – 200100357.03

a Primary monosomic and monotelodisomic stocks from the cross between G. hirsutum (TM-1) and G. barbadense (3–79)
b Primary monosomic and monotelodisomic or tertiary monosomic stocks from the cross between G. hirsutum (TM-1) and G.
tomentosum
c M: monosomic stock
d sh: monotelodisomic stock with short arm present
e Lo: monotelodisomic stock with long arm present
f NTN represent tertiary monosomic stocks of G. hirsutum (TM-1) crosses with G. tomentosum, they are missing a chromosome

segment of two chromosomes involved in reciprocal translocation. For example, NTN 17-11 denotes that TM-1 chromosome lacks

chromosome segments of chromosomes 17 and 11 in sub F1 plant
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at a greenhouse of USDA-ARS, Mississippi State,

MS. Fresh leaves were collected from individual

plant, frozen in liquid nitrogen, and then subjected to

genomic DNAs extraction by Qiagen DNeasy plant

maxi kit (Qiagen Inc, Valencia, CA, USA).

BAC-derived SSR marker chromosomal

assignment

SSR primers were developed from the TM-1/HindIII

BAC and TM-1/BamHI BIBAC libraries (Yu et al.

2002a, b). Libraries were screened with four types of

SSR oligo sequences (‘CA’, ‘GA’, ‘TA’, and

‘GAA’). SSR-positive BAC clones were then sub-

cloned and sequenced. Primer pairs were designed

from the unique flanking sequences of the SSR loci

and then used for chromosomal assignment. One

hundred and ninety two unlabeled BAC-derived SSR

primer pairs were synthesized initially for detection

of polymorphism by 3.5% MetaPhor agarose gel

electrophoresis between parents of cytogenetic stocks

(TM-1, 3–79, and G. tomentosum). A total of 94

polymorphic BAC-derived SSR primer pairs between

parents were then labeled with 6-FAM, HEX, NED,

PET, or VIC at Applied Biosystems (Applied

Biosystems, Foster City, CA, USA) for the genotyp-

ing on aneuploid cytogenetic stocks using an

automated capillary electrophoresis system

ABI3100 or ABI3730XL Genetic Analyzer with

GeneMapper software 4.0 (Applied Biosystems,

Foster City, CA, USA). PCR reactions were per-

formed in 10ll volumes containing 10 ng of cotton

template DNA, 1 9 GeneAmp PCR Gold buffer

(10 9 , 150 mM Tris–HCl, pH 8.0, 500 mM KCl),

1 mM MgCl2, 0.2 mM dNTPs, 0.1lM of each single

primer, 0.35 U of Taq polymerase (AmpliTaq,

Applied Biosystems, Foster City, CA, USA). The

PCR amplification profile consisted of an initial

denaturation of DNA at 94�C for 5 min, followed by

35 cycles of 94�C for 30 s, 60�C for 1 min, and 72�C

for 1 min. After 35 cycles, the extension temperature

of 72�C was held for 8 min. The deletion analysis

method was used for chromosomal assignment of

BAC-derived SSR markers (Liu et al. 2000; Ulloa

et al. 2005). The absence of the TM-1 (G. hirsutum)

allele in any one of the hypo-aneuploid F1 plant

indicated the missing chromosome or chromosome

arm was the most likely location of the marker

(Fig. 1).

Results

Results showed that 175 out of total 192 primer pairs

produced reliable amplified products on the three

parental lines. The amplified SSR alleles ranged from

100 to 314 bp. A total of 76 polymorphic primer pairs

were found between TM-1 and 3–79, whereas the

number of polymorphic primer pairs was 59 between

TM-1 and G. tomentosum. The chromosomal assign-

ment results are summarized in Table 2. Overall, 39

BAC-derived SSR markers were located to 17

different chromosomes or chromosome arms. No

markers could be assigned on the two homoeologous

chromosome pair 9 and 23 by either series of the

cytogenetic stocks.

Primary monosomic and monotelodisomic stocks

deletion analysis

The chromosomal locations of the overlapped poly-

morphic markers between both parental combination

(TM-1 and 3–79; TM-1 and G. tomentosum) were

accomplished by both series of aneuploid stocks.

However, there are also some of the SSR markers

which are polymorphic only between TM-1 and 3–79

or between TM-1 and G. tomentosum. Under this

situation, only one series of aneuoploid lines was

used for chromosome location identification. Chro-

mosome location of markers from primer pairs

TMB0154, TMB1356, TMB1629, TMB1277,

TMB1421, TMB0853, TMB1346, TMB2068, and

TMB0564 were confirmed by both aneuploid stocks

(Table 2). The conflicting chromosome location

result had not been found by both series of aneuploid

stocks. In addition, 16 more BAC-derived SSR

markers were assigned to 12 different chromosomes

by only aneuploid F1 stock between TM-1 and 3–79.

Similarly, 11 more markers were located to 8

different chromosomes using only aneuploid F1

stocks between TM-1 and G. tomentosum.

Tertiary monosomic deletion analysis

The tertiary monosomic lines (NTN) provided infor-

mation on the chromosome location in one of the two

chromosomes involved in the translocation. How-

ever, the results from NTN analysis may not suggest

exact location of the markers unless comparing
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results from aneuploid stocks related to the chromo-

somes involved in NTN line. Primer pair TMB1348

showed missing TM-1 allele 148 on NTN6-14 and

also Te14Lo on aneuploid G. barbadense, which

suggested it was on short arm of chromosome 14.

Similarly, the chromosome location of TMB1232

allele 189 was put on the short arm of chromosome

11. Primer pair TMB1664 missed TM-1 allele 188 in

both NTN16-15 and NTN4-15. It indicated its

possible chromosome location was 15. Molecular

markers generated from primer pairs TMB2018,

TMB0312, and TMB1295 could only find the defi-

ciency in one tertiary monosomic stock. Thus, we

could not find their exact chromosome locations,

which could be on either of the two involved

chromosomes (Table 2).

In conclusion, we discovered chromosome loca-

tions of 39 BAC-derived SSR markers in cotton.

Among all the markers assigned to chromosomes, 19

markers were assigned to A-subgenomes (chromo-

some 1–13), 17 markers were assigned to D-

subgenomes (chromosome 14–26). The subgenome

status for the other three markers remained unclear

because they could only be assigned to two potential

chromosomes by tertiary monosomic stocks

(Table 2).

Discussion

Cotton is the world’s leading fiber crops. Two

allotetraploid species, G. hirsutum and G. barba-

dense, are the most important cultivated cottons

which united the A- and D-compound genomes

together (AD; 2n = 4x = 52) (Wendel and Albert

1992). The relatively large number of chromosomes

and allotetraploid nature of cotton genome compli-

cates cotton genetic mapping. Aneuploid stocks-

based chromosomal assignment of markers and

linkage groups was widely used in allopolyploid

crops such as wheat (Werner-Fraczek and Close

1998) and cotton (Saha and Stelly 1994; Liu et al.

2000; Kohel et al. 2002; Rong et al. 2004). Recently,

several SSR marker-based molecular maps have been

Fig. 1 Capillary electrophoresis results showing the chromo-

somal location of TMB1630 SSR markers. This marker was

polymorphic between TM-1 (G. hirsutum) and 3–79 (G. bar-
badense) and allele size was 228 and 217 bp, respectively. (A)

TM-1; (B) 3–79; (C) Aneuploid cytogenetic line with

deficiency of chromosome 20 showing the missing of TM-1

allele; (D) Aneuploid cytogenetic line with deficiency of

chromosome 20 short arm showing the presence of both

parental alleles; (E) Aneuploid cytogenetic line with deficiency

of chromosome 20 long arm showing TM-1 allele is missing
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Table 2 Chromosome locations of BAC-derived SSR markers

Primer Sequence (50? 30) Allele size (TM-1/3–79/G. t)a Chromosome locationb

3–79c G. td

TMB0062 F: GCATTGAAGGAAAAAGAAGAACC 245–248*/245–268/245 – 1

R: ATGCCTTGTTTGCTTGAAGT

TMB1421 F: TGCATATAATGCAAGAATTCCA 180*/167/186 1 sh 1 sh

R: AGCAATTGGTATTAGAACTAGG

TMB0605 F: AAATTAAACACGATTTCAAACGA 290*/295/290 3 Lo

R: TGTTTTGCATGCCTGGTACA

TMB0564 F: ATTTCCATCACTTACACAC 101–196*/159/100–183 3 Lo 3 Lo

R: CAGTAATCCTTAACTCAAG

TMB0446 F: GCTTCTTTCTCTGGCTGCTG 176*-185/183/176–184 4 Lo –

R: GAAAGGGGGCTGATTTTGAG

TMB0191 F: TGCGGTTTGAAATAGCATCAG 167–181–207*/167–175–189–214/

167–185–196–202

5 sh –

R: GTTGCATCTTCGCTGTCTTG

TMB1277 F: GCGAGAGGGAAGTTGTAATGTC 251*/263/263 6 Lo 6 Lo

R: CCAACACACCAACACTCCAC

TMB0154 F: TGTCAAGTTCAAGGGCACAA 258*/246/244 6 sh 6 sh

R: TCCAAGTCCCACCATGAGTT

TMB1346 F: ATGCTAAGTCTGACACATTGG 166–266*/274/169–274 6 Lo 6 Lo

R: TCTCATTGCATCAACCGAAT

TMB0853 F: CAAGTTCAAGGGCACAAAAT 249*/237/235 6 sh 6 sh

R: CCCACCATGAGTTATTTCCA

TMB1538 F: TTGTCAAGTTCAAGGGCACA 178–208*/196/194 6 sh –

R: TTAGTTCATAGTTTGGATTGATGC

TMB0436 F: TGTGGCACAACCTTCCAAT 188–209*/169/169 – 6 sh

R: CGTGTTCTCCATTTGATTCAT

TMB0180 F: CAACCATCACACCCAACAAA 183*-196/175–194/183–194 7 sh –

R: AAAATGGAATGTTCCAGTCACC

TMB1356 F: GTGTACATTGCGCTTTCGAG 199–238*/203/198 10 Lo 10

R: TCCAAAATTTCAAGCCAACC

TMB0380 F: CCCTACGCCCCTAATAGCAC 243*/236/232 10 Lo –

R: TCGAGTTACTTTTGGCAAGG

TMB0325 F: GGAGCCTGGGTCTCTAGCTT 199*/186/176 10 Lo –

R: ACGGTGGTCTGGTGACTGA

TMB0307 F: GGAGCCTGGGTCTCTAGCTT 144–198*/186/176 10 Lo NTN10–19

R: ACGGTGGTCTGGTGACTGA

TMB0043 F: TTGCGTTTAGTTGATTTTCTAC 173–178*/175–182/163–175 – 11 sh

R: CAATATCCCAGCCCTTTTCC

TMB1660 F: GCATTGAATAATACTGGCTAAGAGC 118–127–198*/190/175 – 12 sh

R: CAATAACAAATTTAGCCCATCG

TMB1348 F: ACGATTGTGGAAAGAGATAGG 148*/141/141 14 sh NTN6–14

R: TCCGACCTGAAATCTGACCT

TMB0201 F: GCTTGTTACGCTTCCACCA 202–226*/201/202–213 – 15 sh

R: ATTGCTTTACGGCATCTGCT
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Table 2 continued

Primer Sequence (50? 30) Allele size (TM-1/3–79/G. t)a Chromosome locationb

3–79c G. td

TMB1271 F: TCGATTAAAAATGAGCCTTGG 239*/192/210 16 Lo –

R: GGATACAATCTAATTTCATCCCAAT

TMB2068 F: AAGTTTTCGGCTCCCTCACT 150*/133/147 16 sh 16 sh

R: GCTGCTGGGGACTATTCTTG

TMB0564 F: ATTTCCATCACTTACACAC 101*-196/159/100–183 16 sh –

R: CAGTAATCCTTAACTCAAG

TMB0874 F: AAATAGAAACACAGAAAAAAAAATA 198*/187/198 17 Lo –

R: AGACCAGCTGTGTTCTAGTA

TMB0029 F: TAGGCATAACCAACATGACC 197–203–212*/197–212/197–202 – 18 Lo

R: TGGCTAGGTGGTATAAACTGAG

TMB1638 F: AAAACCAAGAATCGAGGAAAAA 152*-183/152–156/153–162 – 18 sh

R: TGCAATCCTCGAAGGTCTTT

TMB1664 F: AAATACCGGAACTTGATTGGG 188–205*/193/156 18 sh –

R: AATTTGGTTGGGTTTCCACA

TMB1630 F: TCCATGGAAATCCATCAACA 228*/217/224 20 Lo –

R: ACCCAAGTTGCAGCTGTTTC

TMB1313 F: TCCCTTTTGTTTCCTTGTGG 188–194*/183–188/188–193 20 sh –

R: TCCTATTCAATTCAGGGCTTC

TMB1629 F: TTCCAAGGTTTGCCTTTGTT 239*/314/232 20 sh 20 sh

R: TCATGAAAGAGATAAAGGAGAAAAGA

TMB0443 F: AAGTTGCAGGTCTTTCTC 257*/247–259/247–271 – 20 Lo

R: ACCATCCATACCATCATC

TMB0313 F: CCTGTTTATGCTGCCTTTGA 164–199*/164–173/164–173 – 25

R: CAATACCCATGCTTGGTTCC

TMB0366 F: GAGCCCACCATTATCACTCC 201–206*-216/201–216/199–212 26 Lo –

R: GGTGGTCATGTGAGAGAGGA

TMB1664 F: AAATACCGGAACTTGATTGGG 188*-205/193/156 – NTN16–15; NTN4–15

R: AATTTGGTTGGGTTTCCACA

TMB1232 F: TTACCAACTCCAAATCTGTAAC 189*-201/256–281/204 – 11sh; NTN12–11

R: CGATCAGAATCCAAGCACAG

TMB2018 F: GCTCCATTGGTTGCAGGTAT 228–231*/228–256/228–237 – NTN17–11

R: CATGAAGTTGAAAGAAGCAGCTA

TMB0312 F: AGCTTTTCCATTCCAGAGCA 173–206*/173–193/173–193 – NTN12–11

R: GGTTGTTGCAAGAGTTCACG

TMB1295 F: CTGATCCAAACACCCATGC 217–223*/217–221/211–218 – NTN10–19

R: CGTGGAATTTGGTCATTTTG

a Allele size presents as the order TM-1/3–79/G.t; G. t indicate G. tomentosum; allele marked by ‘‘*’’ had been assigned

chromosomal location
b Chromosome location with Lo and sh represent long arm and short arm, respectively
c Chromosome location identified by aneuploid F1 hybrids between TM-1 (G. hirsutum) and 3–79 (G. barbadense)
d Chromosome location identified by aneuploid F1 hybrids between TM-1 (G. hirsutum) and G. tomentosum
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published in cotton (Han et al. 2004, 2006; Nguyen

et al. 2004; Lacape et al. 2005; Park et al. 2005;

Song et al. 2005; Frelichowski et al. 2006; Guo et al.

2007). Even though the most saturated SSR marker-

based linkage map reached an average 1.91 cM inter-

marker distance (Guo et al. 2007), most of these

markers were from expressed sequence tags (EST)

and reflected gene-rich regions, which may not cover

the whole genome of cotton. Lacape et al. (2003)

proposed that recombination hot spots along the

chromosome, biased distribution of available mark-

ers, and insufficient marker number would lead to

uncompleted coverage of whole genome. Developing

new SSR markers from a BAC library has the

potential to populate currently relatively blank

regions of the genome, which may be targeted by

conventional marker development methods (Liu et al.

2000; Lichtenzveig et al. 2005; Frelichowski et al.

2006). Additional BAC-derived SSR markers will

help to saturate current genetic linkage maps of

cotton. The 39 BAC-derived SSR markers loci which

localized to specific chromosomes and/or chromo-

some arms in this experiment could be ideal

candidates as framework markers to extend preexist-

ing linkage maps.

Considering the correspondence between BAC-

derived SSR markers and their original clones,

chromosomal assignment of these markers will

facilitate the integration of physical maps with

genetic maps and the coordination of chromosome-

based genome sequencing (Danesh et al. 1998;

Cregan et al. 1999; Chen et al. 2002; Yu et al.

2004b, Wu et al. 2004). Yu et al. (2002a, b) reported

the development of these set of BAC-derived SSR

markers and their importance to bridge physical

contig maps with genetic linkage maps. Their

following studies (Yu et al. 2004a, b) showed the

ongoing research toward a whole-genome physical

map of cultivated allotetraploid cotton by an auto-

mated procedure. Wang et al. (2006, 2007) provided

a classic example how to integrate genetic and

physical maps in tetraploid cotton using SSR markers

by fluorescence in situ hybridization (FISH). How-

ever, majority of these markers were genomic SSRs

developed by conventional methods and EST-SSRs.

The direct relations among BAC-derived SSR mark-

ers, their chromosomal locations, and original clones

will increase the efficiency and effectiveness in the

integration of linkage and physical maps in tetraploid

cotton (Yu et al. 2004a, b). Although some TM series

BAC-derived SSR markers were associated to chro-

mosomes by linkage mapping in previous reports

(Han et al. 2004, 2006; Song et al. 2005; Guo et al.

2007), we used capillary electrophoresis system to

screen microsatellite and standard nomenclature

documented in CMD. Abdurakhmonov et al. (2007)

used some of these BAC derived SSR markers to

associate with photoperiod related mutation. Our

study provided valuable information on the chromo-

somal locations of these markers. The concordance

comparison between linkage mapping and deletion

analysis could not be performed in this study.

In this experiment, most of the primer pairs

produce one polymorphic locus among three cytoge-

netic stock parents, which could be chromosomally

assigned. However, two polymorphic SSR loci had

been amplified from each primer pair of TMB0564

and TMB1664. The 196 bp locus of TMB0564 was

located to the long arm of chromosome 3 by both

series of aneuploid stocks (TM-1 and 3–79; TM-1

and G. tomentosum), whereas the 101 bp locus of

TMB0564 was assigned to the short arm of chromo-

some 16. As to primer pair TMB1664, the 188 bp

locus was localized to chromosome 15 by two tertiary

monosomic stocks, but the other 205 bp locus was

put on short arm of chromosome 18. However, no

homeologous relationship could be found between

chromosome 3 and 16 or between chromosome 15

and 18 (Wang et al. 2006). Rong et al. (2004)

observed several duplication events within each

subgenome in addition to homoeologus duplication

in cotton. They suggested that this could be due to

retrotransposition or present-day cotton may be

derived from a putative ancestor containing six or

seven chromosomes. In another linkage mapping

study, Han et al. (2006) located marker

BNL3590_180 on chromosome 2, but the other two

loci generated from the same primer pair BNL

3590_215 and BNL3590_265 were on chromosome

17. Same situations happened on loci amplified using

primers CIR094 and NAU0667 (Han et al. 2006).

Previously studies on cotton functional genes analy-

ses (Pfeil et al. 2004; An et al. 2007) also suggested

that there were more events of duplication in cotton

genome in addition to the polyploidy event in the

evolution of tetraploid cotton species.

Parental screening results revealed 76 and 59

polymorphic primer pairs between TM-1 and 3–79 or
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G. tomentosum, respectively. However, only 39

BAC-derived SSR markers had been located on

chromosomes by either series of the aneuploid

cytogenetic stocks. The remaining polymorphic

markers could not be assigned to specific chromo-

somes possibly due to the following reasons: (1) lack

of complete chromosome coverage of substitution

stocks; (2) the slightly difference among individual

vegetative copies of substitution line which may

modified by some epigenetic factors; (3) some

residual effect of the original aneuploid when it was

backcrossed with TM-1 to recover the hypoaneuploid

TM-1 isogenic parent for the specific chromosome; or

(4) chromatin losses during backcrossing or other

events of unknown cytological abnormalities in the

development of these cytogenetic stocks.
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